What’s a day without a provocative quadrant chart that makes many people howl with outrage (or at least mutter at their screen)? Well, not this day. Over on LinkedIn, Peter Clarkson of Woodside Energy in Australia triggered me with the idea of a way to categorize various decarbonization solutions, a standard quadrant chart with sexy/unsexy and practical/impractical as the options. He okayed me stealing the idea, saying that as he hadn’t actually done anything with the idea at all, he couldn’t claim it as intellectual capital. Thank you, Peter.
For those interested in other areas I’ve spent time on, such as ground transportation, aviation, and marine shipping, you’ll be either pleased or displeased to know that I have charts on those subjects already in hand and two more in mind, and upcoming articles will address those domains.
What defines sexy? Lots of press. Frequent headlines. Gushing talking heads who should know better. Promises of massive deployment and profits. SPACs or ICOs. VCs. Glistening Photoshop renders. Curves. Lots of fanbois and fangrrrls who proselytize on its behalf.
Unsexy? Few media headlines. Business as usual. Stuck in narrow and industry specific journals. Lots and lots of numbers, and not a lot of hype. Lots of institutional investment.
Impractical? Ignore laws of thermodynamics. Ignore tiny market potential. Ignore history of failures of exactly the same thing. Ignore massive headwinds. Massive overstatements of potential. Regular deferral of delivery. A lot more Powerpoint than production.
Practical? Lots of deployment. Lots of deals. Lots of straightforward growth. Economically viable. Don’t assume the laws of physics are mutable. Don’t assume human nature will magically change.
Let’s start with the sexy yet practical stuff, which is pretty limited in electricity and energy storage. There is a reason why utilitarian is not an adjective one uses to describe things that get your blood flowing, after all. Imagine telling a person you’d like to date or are dating that they are utilitarian.
But if something fits into this odd category, lithium-ion grid scale batteries are it, as well as similar cell-format battery chemistry such as lithium phosphate. Two of the biggest storage developers in the UK and US, whose leaders I’ve spoken to at length, have GW-scale battery pipelines in development, and of course Tesla’s Megapack keeps eating duck curves in California and Australia. I like cell-based batteries a lot, and project that they will be the third largest form of grid storage in the end. They have advantages of being built in massive numbers and fast response, but they have significant limitations in terms of the close coupling of power and energy.
Projection of grid storage capacity through 2060 by major categories by Michael Barnard” data-image-caption=”Projection of grid storage capacity through 2060 by major categories by author” data-medium-file=”https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity-400×240.png” data-large-file=”https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity-800×480.png” loading=”lazy” class=”size-full wp-image-237171″ src=”https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity.png” alt=”CT Projection of Grid Storage Capacity” width=”4400″ height=”2640″ srcset=”https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity.png 4400w, https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity-400×240.png 400w, https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity-800×480.png 800w, https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity-768×461.png 768w, https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity-1536×922.png 1536w, https://cleantechnica.com/files/2021/04/CT-Projection-of-Grid-Storage-Capacity-2048×1229.png 2048w” sizes=”(max-width: 4400px) 100vw, 4400px”/>
Projection of grid storage capacity through 2060 by major categories by author
Redox flow batteries are starting to get attention, especially with China’s 100 MW/400MWh redox flow battery grid connection recently. Redox flow technology is less mature than lithium-ion, has different key materials constraints, but most notably decouples power and energy.
And fission nuclear energy is having another moment in the sun, edging up from boring GW-scale steam kettles that just sit there and provide low-carbon energy — with occasional moments of global panic — to being put on life support in multiple countries, being reconsidered in Europe given the Russian invasion of Ukraine’s impact on natural gas supplies, and being built reasonably well in China. The technology still has the problems that make it slow to build and expensive in most jurisdictions in the world, and those problems aren’t going away while wind, solar, transmission, and storage are gathering speed, so I suspect this latest nuclear renaissance will end like the last one, at least outside of China.
In the sexy but impractical category, hydrogen takes pride of place. We need green hydrogen to decarbonize the roughly 90 million tons of annual consumption we’ll still have left in 2100, and need to start that now, but hydrogen for energy is an overhyped fallacy promoted by the fossil fuel industry and people who can’t imagine energy from things that don’t burn.
Also in that category is the always receding into the future technology of fusion energy. As I noted last year, the most promising technology, the ITER Tokamak with its million components and likely $45 billion price tag, is expecting to have sustained fusion with net heat energy for five minutes at a time with no electrical generation in 2040. And if the heat energy were turned into electricity, it would be energy neutral, requiring as much energy to run as it generated.
Small modular nuclear reactors are hot right now too, but forego scaling up, won’t be able to scale numerically to sufficient volumes to achieve cost reductions, will still require all of the security and decommissioning costs, and will still have that pesky waste management problem. They aren’t likely to be an actual thing unless a big, rich country picks a single design of the 18 or so extant and makes it a moonshot priority to build them.
Vehicle-to-grid technologies ignore so many realities of how people actually live outside of US suburban detached homes — over 99% of the world’s population, in other words — and so much about human nature that it’s remarkable how much attention the tech continues to get. Concentrating solar power looks cool and keeps being used to decorate articles on solar, but it lost so completely and utterly to photovoltaic solar that it’s remarkable that the US DOE and Chile keep funding efforts on it. And then there’s Heliogen’s AI-spangled CSP of course, one of Bill Gross’ SPAC failures. Wind funnels like the now defunct Sheerwind Invelox and their sister technologies of vibrating stalks, energy towers, VAWTs, and Savonius retreads are a never ending source of nonsense hype.
You will also note that fission energy has a leg in the sexy but impractical quadrant. That’s because it’s being hyped for places that are incapable of ever building it cheaply and on time again for a variety of reasons, like the UK, Ontario, and the US.
And then there are technologies so bad that they don’t even merit being called impractical. Energy Vault’s concrete block energy storage is top of mind, but cold fusion is in there as well. Complete and utter specious nonsense.
Continuing clockwise around the quadrants we get to neither sexy nor practical. Yeah, these are pretty ugly beasts.
You’ll note that fission has a leg in here too. Yeah, large-scale nuclear is boring, well-understood technology that in the vast majority of jurisdictions is not even remotely an alternative. It’s pretty much limited to the 30 countries that already have it, and little things like Fukushima’s trillion dollar price tag, the Chernobyl exclusion zone, the 30 of 56 French reactors that are offline for scheduled and unscheduled maintenance and issues, and the Russian militarization of the Zaporizhzhia nuclear plant in Ukraine are not increasing its attractiveness to rational energy strategists.
Many people will react negatively to gas and coal generation being in the ugly and impractical quadrant, not because of the aesthetic virtues of open pit coal mines or the enhanced sunsets from air pollution, but because they are the backbone of a lot of energy globally. However, that’s temporary given the massive negative externalities of global warming that require we eliminate them as rapidly as possible. And for those who still consider natural gas generation to be a bridge fuel, when you add in the average upstream methane leakage of 1.5% globally, the CO2e emissions per MWh are equal to high-quality coal generation, so not a climate win.
I feel almost bad putting compressed air energy storage into this category. It’s earnest, means well, and as a technology you can imagine it doing charity work and helping old ladies across the street. But it has massive thermal management issues that lead to it have
Go to Source