Global Military Radars Market Report 2022 to 2027: Rising Adoption of Unmanned Aerial Vehicles and Lightweight Radars Presents Opportunities

DUBLIN, Nov. 24, 2022 /PRNewswire/ — The “Military Radars Market by Component (Antenna, Transmitter, Receiver, Duplexer, Display, Digital Signal Processor), Platform (Land, Naval, Airborne, Space), End User, Type, Frequency Band, Dimension, Range, Application, & Region – Global Forecast to 2027” report has been added to  ResearchAndMarkets.com’s offering.



The global military radars market size is projected to grow from USD 13.5 billion in 2022 to USD 17.1 billion by 2027, at a CAGR of 4.7% from 2022 to 2027.

Air & missile defense:: The fastest-growing segment of the military radars market, by application

According to the application, the military radars market is believed to be dominated by the air and missile defense industry. The market for air & missile defense radars will be driven by ongoing modernization initiatives in airspace monitoring in the Asia Pacific region, activities like sea-based military operations, drug trafficking, illegal migrations, demand for early warning threat detection systems, ongoing demand for mine detection systems, and equipment by the US military to address conflicts in the Middle East and Asia Pacific.

Asia Pacific: The fastest-growing region in the military radars market.

The military radars market is anticipated to grow at the highest CAGR during the forecast period in Asia Pacific. This region’s expansion can be linked to the rising expenditures on air defense systems to bolster their combat zone defenses and counter threats.

China and India are improving their command-and-control networks to increase their capacity for resource allocation and surveillance.

In the Asia Pacific area, China is anticipated to dominate the market for military radars. Australia, Vietnam, Thailand, and other nations that had previously invested on land forces are now thinking about increasing their spending on air-sea defense.

Key Topics Covered:

1 Introduction

2 Research Methodology

3 Executive Summary

4 Premium Insights

4.1 Attractive Market Opportunities in Military Radars Market

4.2 Military Radars Market, by Frequency Band

4.3 Military Radars Market, by End-user

4.4 Military Radars Market, by Dimension

4.5 Military Radars Market, by Application

4.6 Military Radars Market, by Component

4.7 Military Radars Market, by Waveform

4.8 Military Radars Market, by Technology

4.9 Military Radars Market, by Country

5 Market Overview

5.1 Introduction

5.2 Market Dynamics

5.2.1 Drivers

5.2.1.1 Significant Investments by Governments

5.2.1.2 Growth in Military Radar and Defense System Procurement

5.2.1.3 Rise in Military Spending on Modern and Advanced Equipment

5.2.1.4 Modernization and Upgrade in Border Surveillance Systems

5.2.1.5 Growth of Missile Detection Systems

5.2.1.6 Advancements in Radar Technologies

5.2.1.7 Emergence of Modern Electronic Warfare and Network-Centric Warfare

5.2.1.8 Development of Phased Array Solid-State Radars

5.2.2 Restraints

5.2.2.1 High Investments in Early Phases

5.2.2.2 Lack of Infrastructure for Development of Communication Technologies

5.2.3 Opportunities

5.2.3.1 Growing Requirement for Military Radar Technologies

5.2.3.2 Rising Adoption of Unmanned Aerial Vehicles and Lightweight Radars

5.2.3.3 Development of Low-Cost and Miniaturized Radars

5.2.3.4 Rising Adoption of Lightweight Uavs

5.2.3.5 Ground Surveillance Radars for Border Monitoring

5.2.4 Challenges

5.2.4.1 Stringent Cross-Border Trading Policies

5.2.4.2 Susceptibility to New Jamming Techniques

5.2.4.3 Extreme Weather Conditions

5.3 Trends/Business Impacting Customers’ Businesses

5.3.1 Revenue Shift and New Revenue Pockets for Military Radar System Manufacturers

5.4 Military Radars Market Ecosystem

5.4.1 Prominent Companies

5.4.2 Private and Small Enterprises

5.4.3 End-users

5.5 Value Chain Analysis

5.6 Use Case Analysis

5.6.1 Use Case: Next-Generation Air Defense

5.6.2 Use Case: Radar System for Small and Highly Maneuverable Targets

5.6.3 Use Case: Sea-Based Radar System with Upgraded X-Band Radar

5.6.4 Use Case: Shipborne Radar System- Air Surveillance 3D Radar

5.7 Average Selling Price

5.8 Trade Analysis

5.9 Porter’s Five Forces Analysis

5.10 Key Stakeholders and Buying Criteria

5.10.1 Key Stakeholders in Buying Process

5.10.2 Buying Criteria

5.11 Tariff and Regulatory Landscape

5.12 Key Conferences and Events from October 2022-September 2023

6 Industry Trends

6.1 Introduction

6.2 Technology Trends

6.2.1 Software Defined Radars

6.2.2 Mimo (Multiple Inputs/Multiple Outputs)

6.2.3 3D and 4D Radars

6.2.4 Inverse Synthetic Aperture Radars (Isar)

6.2.5 Quantum Radars

6.2.6 Lidar Technology

6.3 Technology Analysis

6.3.1 Use of Polarimetric Radars

6.3.2 Development of Active Electronically Scanned Array (Aesa)

6.3.3 3D Printing of Rf Equipment

6.3.4 Use of Advanced Material in Radar Systems

6.3.5 Use of Solid-State Modules

6.3.6 Implementation of Lightweight Radars

6.3.7 4D Electronically Scanned Array Radar Systems

6.3.8 Supply Chain Analysis

6.4 Impact of Megatrends

6.4.1 Introduction of Internet of Things (Iot) and Digitalization

6.4.2 Shift in Global Economic Power

6.4.3 Development in Antenna in Radar Systems

6.5 Innovation and Patent Registrations

7 Military Radars Market, by Component

7.1 Introduction

7.2 Antennas

7.2.1 Parabolic Reflector Antennas

7.2.1.1 High Signal Gain and Directivity at Narrow Bandwidths

7.2.2 Slotted Waveguide Antennas

7.2.2.1 Growing Demand for Lightweight and Portable Surveillance Radars to Fuel Segment

7.2.3 Planar Phased Array Antennas

7.2.3.1 Rising Adoption of Tactical Defense Radar Systems

7.2.4 Active Scanned Array Antennas

7.2.4.1 Demand for Reliable and Efficient Surveillance Radars to Boost Segment

7.2.5 Passive Scanned Array Antennas

7.2.5.1 Tracks Multiple Targets

7.3 Transmitters

7.3.1 Microwave Tube-Based Transmitters

7.3.1.1 Capable of Transmitting High-Power Microwaves Transmitters

7.3.2 Solid-State Electronics

7.3.2.1 Reliable Mode of Signal Transmission in Critical Weather

7.4 Receivers

7.4.1 Analog Receivers

7.4.1.1 Less Preferred Than Digital Receivers

7.4.2 Digital Receivers

7.4.2.1 Easy to Design, Compact, and Reliable

7.5 Power Amplifiers

7.5.1 Traveling Wave Tube Amplifiers (Twta)

7.5.1.1 Demand for Large Bandwidth-Capable Radars to Drive Segment

7.5.2 Solid-State Power Amplifiers

7.5.2.1 Used in Limited Bandwidth and Low Voltage Applications

7.5.2.2 Gallium Arsenide (Gaas)

7.5.2.2.1 Driven by Rising Demand for Low Power-Consuming Electronics Warfare Systems

7.5.2.3 Gallium Nitride (Gan)

7.5.2.3.1 Operates in Micrometer and Millimeter-Wave Range

7.6 Duplexers

7.6.1 Branch Type Duplexers

7.6.1.1 Growing Demand for Compact Duplexers to Drive Segment

7.6.2 Balanced Type Duplexers

7.6.2.1 Large Size Limits Application

7.6.3 Circulator Duplexers

7.6.3.1 Smaller Than Other Models

7.7 Digital Signal Processors

7.8 Stabilization Systems

7.9 Graphical User Interfaces

7.9.1 Control Panels

7.9.2 Graphic Panels

7.9.3 Displays

7.9.4 Others

8 Military Radars Market, by Platform

8.1 Introduction

8.2 Land

8.2.1 Fixed Radars

8.2.1.1 Monitors Strategic Locations for Intrusion Activities

8.2.2 Vehicle-Based Radars

8.2.2.1 Used for Armored Military Vehicles

8.2.3 Man-Portable Radars

8.2.3.1 Primarily Used for Counter-Drone Detection

8.3 Naval

8.3.1 Vessel-Based Radars

8.3.1.1 Demand for Effective Weapon Guidance Systems for Naval Ships to Boost Segment

8.3.2 Coastal Radars

8.3.2.1 Detects Adverse Effects of Critical Weather Conditions

8.3.3 Unmanned Surface Vehicles Mounted Radars

8.3.3.1 Low Operation Cost and Multi-Purpose Usage

8.4 Airborne

8.4.1 Manned Aircraft Radars

8.4.1.1 Offers Extended Missile Guidance and Operational Efficiency in Cluttered Scenarios

8.4.2 Uav Radars

8.4.2.1 Detects and Tracks Targets

8.4.3 Aerostats/Balloons-Based Radars

8.4.3.1 High Altitude and Operational Capabilities

8.5 Space

8.5.1 Moving Target Identification and High-Resolution Digital Mapping

9 Military Radars Market, by Application

9.1 Introduction

9.2 Airspace Monitoring and Traffic Management

9.2.1 Tracks Threats and Provides Accurate Information on Existing Fleet Aircraft

9.3 Maritime Patrolling, Search, and Rescue

9.3.1 Rising Sea-Based Military Operations, Drug Trafficking, and Illegal Migration to Drive Segment

9.4 Air and Missile Defense

9.4.1 Act as Early Warning Threat Detection Devices

9.5 Weapon Guidance

9.5.1 Focus on Improving Weapon Accuracy and Effectiveness to Fuel Segment

9.6 Ground Surveillance and Intruder Detection

9.6.1 Need for Rapid and High-Resolution Imagery Techniques to Boost Segment

9.7 Airborne Mapping

9.7.1 Better Image Processing Technology

9.8 Navigation

9.8.1 Marine and Airborne Applications

9.9 Mine Detection and Underground Mapping

9.9.1 Detects Metallic and Non-Metallic Objects

9.1 Ground Force Protection and Counter Mapping

9.10.1 Driven by Advancements in Technical Warfare

9.11 Weather Monitoring

9.11.1 Provides Accurate and Precise Weather Forecast

9.12 Space Situational Awareness

9.12.1 Emphasizes on Developing Space Weather and Near-Earth Object (Neo) Services

9.13 Others

10 Military Radars Market, by End-user

10.1 Introduction

10.2 Navy

10.2.1 Vessel-Based Radars

10.2.1.1 Increasing Demand for Coastal Surveillance Across Geographies to Drive Segment

10.2.2 Airborne Radars

10.2.2.1 Miniaturized and Compact Radar Systems

10.2.3 Coastal Security Radars

10.2.3.1 Used for Coastal Surveillance and Port Security

10.3 Army

10.3.1 Airborne Radars

10.3.1.1 Fulfills Need for Advanced Situational Awareness and Information Dissemination

10.3.2 Land Radars

10.3.2.1 High Threat Detection Capabilities

10.3.3 Over-The-Horizon Radars

10.3.4 Missile and Gunfire Control Radars

10.3.5 Perimeter Surveillance Radars

10.3.6 Long-Range Surveillance Radars

10.4 Airforce

10.4.1 Airborne Radars

10.4.1.1 Preferred in Border Protection Applications

10.4.2 Land Radars

10.4.2.1 Advanced Imaging and Signal Processing Techniques

10.4.3 Precision Approach Radars

10.4.4 Surface Movement Radars

10.4.5 Weather Navigation Radars

10.5 Space

10.5.1 Search and Detection Radars

10.5.1.1 Enables 3D Imaging of Targets

11 Military Radars Market, by Waveform

11.1 Introduction

11.2 Frequency Modulated Continuous Wave (Fmcw)

11.2.1 Increased Dependence on Low-Power Transmission Devices to Drive Segment

11.3 Doppler

11.3.1 Conventional Doppler

11.3.1.1 Used to Monitor Weather Conditions

11.3.2 Pulse-Doppler

11.3.2.1 Combines Features of Pulse Radars and Continuous-Wave Radars

12 Military Radars Market, by Technology

13 Military Radars Market, by Frequency Band

14 Military Radars Market, by Range

15 Military Radars Market, by Product Type

16 Military Radars Market, by Dimension

17 Military Radars Market, by Service

18 Regional Analysis

19 Competitive Landscape

20 Company Profiles

20.1 Introduction

20.2 Key Players

20.2.1 Raytheon Technologies Corporation

20.2.2 Lockheed Martin Corporation

20.2.3 Israel Aerospace Industries (Iai)

20.2.4 Leonardo S.P.A

20.2.5 Thales Group

20.2.6 Bae Systems

20.2.7 Northrop Grumman Corporation

20.2.8 L3Harris Technologies, Inc.

20.2.9 Elbit Systems Ltd.

20.2.10 Teledyne Flir LLC

20.2.11 Saab Ab

20.2.12 Bharat Electronics Ltd.

20.2.13 Indra Sistemas

20.2.14 Aselsan A.S

20.2.15 Telephonics Corporation

20.3 Other Players

20.3.1 Blighter Surveillance Systems Ltd.

20.3.2 Detect Inc.

20.3.3 Hensoldt

20.3.4 Terma A/S

20.3.5 Accipiter Radar

20.3.6 Nrpl Aero

20.3.7 Linktronic

20.3.8 Reutech Radar Systems

20.3.9 Src Inc.

20.3.10 Easat Radar Systems Ltd.

21 Appendix

For more information about this report visit https://www.researchandmarkets.com/r/bf3vyu

Media Contact:

Research and Markets

Laura Wood, Senior Manager

[email protected]

 

For E.S.T Office Hours Call +1-917-300-0470

For U.S./CAN Toll Free Call +1-800-526-8630

For GMT Office Hours Call +353-1-416-8900

 

U.S. Fax: 646-607-1907

Fax (outside U.S.): +353-1-481-1716

Logo: https://mma.prnewswire.com/media/539438/Research_and_Markets_Logo.jpg

SOURCE Research and Markets


Go to Source