Patriot Makes New Discovery at the Corvette Property as it Intercepts 100 m of Spodumene-Bearing Pegmatite at CV9, Quebec, Canada







Patriot Makes New Discovery at the Corvette Property as it Intercepts 100 m of Spodumene-Bearing Pegmatite at CV9, Quebec, Canada






































  • Drill hole CV23-345 hits approximately 100 m of near-continuous spodumene-bearing pegmatite at CV9.
  • Three (3) drill holes have returned continuous pegmatite intersections of 60+ m.
  • Patriot has defined a pegmatite strike length of approximately 450 m by drilling and outcrop at CV9, which remains open.
  • CV9 is located approximately 14 km west of the CV5 mineral resource.
  • Preliminary geological modelling indicates the CV9 Pegmatite significantly thickens to at least 80 m width at one location and remains open in multiple directions.
  • The magnitude of this variably mineralized pegmatite blow-out is significant, sharing similarities to those present at the CV5 Pegmatite in terms of depth and scale.
  • Eighteen (18) core holes (~4,000 m) have been completed in the inaugural drill program at the CV9 Pegmatite – sample assays are pending.
  • While it is early stage, the work done to date has resulted in an improvement in the understanding of the CV9 Pegmatite as the program went on, with a number of high priority targets now identified.

Darren L. Smith, Company Vice President of Exploration, comments: “This is a very strong start to the drill exploration at the CV9 Pegmatite. Although no core assays have been received yet, the presence of spodumene and the length of pegmatite encountered in multiple holes, highlighted by an approximate 100 m near-continuous spodumene-bearing hit in the final hole of the program, are very positive in terms of potential of this pegmatite to hold significant scale.”  

Patriot Battery Metals Inc. (the “Company” or “Patriot”) (TSXV: PMET) (ASX: PMT) (OTCQX: PMETF) (FSE: R9GA) is pleased to announce preliminary results of its inaugural drill program at the CV9 Spodumene Pegmatite at its wholly owned Corvette Property (the “Property” or “Project”), located in the Eeyou Istchee James Bay region of Quebec. The CV9 Spodumene Pegmatite is located approximately 14 km west of the CV5 Spodumene Pegmatite (109.2 Mt at 1.42% Li2O inferred1), 9.5 km west-northwest of the CV13 Spodumene Pegmatite, and 11 km south of the Trans-Taiga Road and powerline infrastructure.

A total of eighteen (18) holes, for approximately 4,000 m of NQ coring, were completed this summer-fall in the inaugural drill program at the CV9 Spodumene Pegmatite (Figure 1 and Figure 2). The Company is pleased to report that wide intervals of pegmatite, dominantly spodumene-bearing, have been returned from multiple drill holes at CV9, including:

  • 100 m in drill hole CV23-345 (includes ~1 m of non-pegmatite dilution),
  • 76 m in drill hole CV23-315,
  • 70 m and 27 m in drill hole CV23-333,
  • 37 m in drill hole CV23-326, and
  • 23 m in drill hole CV23-304

Preliminary logs for all pegmatite drill intercepts >2 m are presented in Table 1, and drill hole attributes in Table 2. Drill core from holes completed at the CV9 Pegmatite is currently being processed at site and no core sample assays have been received yet.

A primary objective of the inaugural drill program at CV9 was to determine the geometry and orientation of the pegmatite system. Therefore, drill holes were completed at a variety of orientations from multiple collar locations (Figure 1) with results consistently improving over the course of the program as understanding of the pegmatite geometry improved. The last eight (8) holes all returned continuous core-length pegmatite intercepts >10 m, including three (3) intersections of 60+ m (see Figure 1 and Table 1).

The CV9 Pegmatite is currently interpreted to be a single principal dyke, which outcrops at surface, has a steep northerly dip, and is moderately plunging to the east-southeast. A strike length of approximately 450 m has been defined to date by drilling and outcrop, which remains open (Figure 1). The width of the dyke is variable; however, preliminary geological modelling indicates the CV9 Pegmatite significantly thickens to at least 80 m width at one location and remains open in multiple directions. The thickening is delineated by three (3), wide, variably mineralized spodumene-bearing pegmatite intersections at different orientations – 70 m (CV23-333), 76 m (CV23-315), and 100 m (CV23–345), all core length. The magnitude of this variably mineralized pegmatite blow-out is significant, sharing similarities to those present at the CV5 Pegmatite in terms of depth and scale. This is a very positive observation for this early phase of drill exploration at the CV9 Pegmatite and suggests a strong potential for significant scale to be present.

The Company will refine the geological model for CV9 upon the receipt of assays and a follow-up drill program will be developed to expand upon the success discussed herein.

The 2023 summer-fall program included the inaugural drill testing of the CV9 Spodumene Pegmatite, in addition to the continued drill delineation of the CV5 and CV13 spodumene pegmatites. Core sample assays remain to be announced for more than 140 drill holes completed over the program, including all 18 holes completed at CV9. Assays for CV9 drill core samples are not expected to be received (and reported) until Q1 2024.

Core processing is continuing at site with drilling temporarily paused for the onset of winter; drilling will resume in early January with a ramp up to ten (10) drill rigs. Core samples from a large number of drill holes have now arrived at the laboratory with processing underway, and shipments are now back to their regular weekly schedule. Results are anticipated to be reported in batches per pegmatite (CV5, CV13, and CV9) as received.

1 The CV5 mineral resource estimate (109.2 Mt at 1.42% Li2O and 160 ppm Ta2O5 inferred) is reported at a cut-off grade of 0.40% Li2O with effective date of June 25, 2023 (through drill hole CV23-190). Mineral resources are not mineral reserves as they do not have demonstrated economic viability.

Although the Company does not comment on the grade of the pegmatite intervals reported, several are noted as spodumene-bearing based on preliminary geological logging. Spodumene-bearing pegmatite refers to the visually identified presence of the mineral spodumene, within the respective interval, as discrete mineral crystals of varying size and orientation hosted within a quartz-feldspar pegmatite. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

About the CV Lithium Trend

The CV Lithium Trend is an emerging spodumene pegmatite district discovered by the Company in 2017 and is interpreted to span more than 50 kilometres across the Corvette Property. The core area includes the approximate 4.35 km long CV5 Spodumene Pegmatite, which hosts a maiden mineral resource estimate of 109.2 Mt at 1.42% Li2O inferred1.

To date, seven (7) distinct clusters of lithium pegmatite have been discovered across the Corvette Property – CV4, CV5, CV8, CV9, CV10, CV12, and CV13. Given the proximity of some pegmatite outcrops to each other, as well as the shallow till cover in the area, it is probable that some of the outcrops may reflect a discontinuous surface exposure of a single, larger pegmatite “outcrop” subsurface. Further, the high number of well-mineralized pegmatites along the trend indicate a strong potential for a series of relatively closely spaced/stacked, sub-parallel, and sizable spodumene-bearing pegmatite bodies, with significant lateral and depth extent, to be present.

Qualified/Competent Person

The information in this news release that relates to exploration results for the Corvette Property is based on, and fairly represents, information compiled by Mr. Darren L. Smith, M.Sc., P.Geo., who is a Qualified Person as defined by National Instrument 43-101, and member in good standing with the Ordre des Géologues du Québec (Geologist Permit number 01968), and with the Association of Professional Engineers and Geoscientists of Alberta (member number 87868). Mr. Smith has reviewed and approved the technical information in this news release.

Mr. Smith is Vice President of Exploration for Patriot Battery Metals Inc. and holds common shares and options in the Company.

Mr. Smith has sufficient experience, which is relevant to the style of mineralization, type of deposit under consideration, and to the activities being undertaken to qualify as a Competent Person as described by the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Mr. Smith consents to the inclusion in this news release of the matters based on his information in the form and context in which it appears.

About Patriot Battery Metals Inc.

Patriot Battery Metals Inc. is a hard-rock lithium exploration company focused on advancing its district-scale 100% owned Corvette Property located in the Eeyou Istchee James Bay region of Quebec, Canada, and proximal to regional road and powerline infrastructure. The Corvette Property hosts the CV5 Spodumene Pegmatite with a maiden mineral resource estimate of 109.2 Mt at 1.42% Li2O inferred1 and ranks as the largest lithium pegmatite resource in the Americas based on contained lithium carbonate equivalent (LCE), and one of the top 10 largest lithium pegmatite resources in the world. Additionally, the Corvette Property hosts multiple other spodumene pegmatite clusters that remain to be drill tested, as well as more than 20 km of prospective trend that remain to be assessed.

1 The CV5 mineral resource estimate (109.2 Mt at 1.42% Li2O and 160 ppm Ta2O5 inferred) is reported at a cut-off grade of 0.40% Li2O with effective date of June 25, 2023 (through drill hole CV23-190). Mineral resources are not mineral reserves as they do not have demonstrated economic viability.

For further information, please contact us at [email protected] or by calling +1 (604) 279-8709, or visit www.patriotbatterymetals.com. Please also refer to the Company’s continuous disclosure filings, available under its profile at www.sedarplus.ca and www.asx.com.au, for available exploration data.

This news release has been approved by the Board of Directors.

BLAIR WAY”                                    

Blair Way, President, CEO, & Director

Disclaimer for Forward-looking Information

This news release contains “forward-looking information” or “forward-looking statements” within the meaning of applicable securities laws and other statements that are not historical facts. Forward-looking statements are included to provide information about management’s current expectations and plans that allows investors and others to have a better understanding of the Company’s business plans and financial performance and condition.

All statements, other than statements of historical fact included in this news release, regarding the Company’s strategy, future operations, financial position, prospects, plans and objectives of management are forward-looking statements that involve risks and uncertainties. Forward-looking statements are typically identified by words such as “plan”, “expect”, “estimate”, “intend”, “anticipate”, “believe”, or variations of such words and phrases or statements that certain actions, events or results “may”, “could”, “would”, “might” or “will” be taken, occur or be achieved. In particular and without limitation, this news release contains forward-looking statements pertaining to the summer-fall drilling program and the completion and publication of Company’s technical report comprising the maiden mineral resource estimate in respect of the Corvette Property.  

Forward-looking information is based upon certain assumptions and other important factors that, if untrue, could cause the actual results, performance or achievements of the Company to be materially different from future results, performance or achievements expressed or implied by such information or statements. There can be no assurance that such information or statements will prove to be accurate. Key assumptions upon which the Company’s forward-looking information is based include the total funding required to complete the development of the Company’s lithium mineral project at the Corvette Property (the “Corvette Project”), including the drilling program.

Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used. Forward-looking statements are also subject to risks and uncertainties facing the Company’s business, any of which could have a material adverse effect on the Company’s business, financial condition, results of operations and growth prospects. Some of the risks the Company faces and the uncertainties that could cause actual results to differ materially from those expressed in the forward-looking statements include, among others, the ability to execute on plans relating to the Company’s Corvette Project, including the timing thereof. In addition, readers are directed to carefully review the detailed risk discussion in the Company’s most recent Annual Information Form filed on SEDAR+, which discussion is incorporated by reference in this news release, for a fuller understanding of the risks and uncertainties that affect the Company’s business and operations.

Although the Company believes its expectations are based upon reasonable assumptions and has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking statements, there may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. There can be no assurance that forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. As such, these risks are not exhaustive; however, they should be considered carefully. If any of these risks or uncertainties materialize, actual results may vary materially from those anticipated in the forward-looking statements found herein. Due to the risks, uncertainties and assumptions inherent in forward-looking statements, readers should not place undue reliance on forward-looking statements.

Forward-looking statements contained herein are presented for the purpose of assisting investors in understanding the Company’s business plans, financial performance and condition and may not be appropriate for other purposes.

The forward-looking statements contained herein are made only as of the date hereof. The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except to the extent required by applicable law. The Company qualifies all of its forward-looking statements by these cautionary statements.

Competent Person Statement (ASX Listing Rule 5.22)

The mineral resource estimate in this release was reported by the Company in accordance with ASX Listing Rule 5.8 on July 31, 2023. The Company confirms it is not aware of any new information or data that materially affects the information included in the previous announcements and that all material assumptions and technical parameters underpinning the estimates in the previous announcements continue to apply and have not materially changed. 

Appendix 1 – JORC Code 2012 Table 1 information required by ASX Listing Rule 5.7.1

Section 1 – Sampling Techniques and Data

Criteria

JORC Code explanation

Commentary

Sampling

techniques

  • Nature and quality of sampling (eg cut

    channels, random chips, or specific

    specialized industry standard

    measurement tools appropriate to the

    minerals under investigation, such as

    down hole gamma sondes, or handheld

    XRF instruments, etc). These examples

    should not be taken as limiting the

    broad meaning of sampling.
  • Include reference to measures taken to

    ensure sample representivity and the

    appropriate calibration of any

    measurement tools or systems used.
  • Aspects of the determination of

    mineralization that are Material to the

    Public Report.
  • In cases where ‘industry standard’ work

    has been done this would be relatively

    simple (eg ‘reverse circulation drilling

    was used to obtain 1 m samples from

    which 3 kg was pulverized to produce a

    30 g charge for fire assay’). In other

    cases more explanation may be

    required, such as where there is coarse

    gold that has inherent sampling

    problems. Unusual commodities or

    mineralization types (eg submarine

    nodules) may warrant disclosure of

    detailed information.

 

  • Core sampling protocols meet industry standard

    practices.
  • Core sampling is guided by lithology as determined

    during geological logging (i.e., by a geologist). All

    pegmatite intervals are sampled in their entirety (half-

    core), regardless if spodumene mineralization is noted

    or not (in order to ensure an unbiased sampling

    approach) in addition to ~1 to 3 m of sampling into the

    adjacent host rock (dependent on pegmatite interval

    length) to “bookend” the sampled pegmatite.
  • The minimum individual sample length is typically 0.3-

    0.5 m and the maximum sample length is typically

    2.0 m. Targeted individual pegmatite sample lengths

    are 1.0 m.
  • All drill core is oriented to maximum foliation prior to

    logging and sampling and is cut with a core saw into

    half-core pieces, with one half-core collected for assay,

    and the other half-core remaining in the box for

    reference. 
  • Core samples collected from drill holes were shipped to 

    SGS Canada’s laboratory in
    Val-d’Or, QC, for sample

    preparation (code PRP89 special) which included

    drying at 105°C, crush to 90% passing 2 mm, riffle split

    250 g, and pulverize 85% passing 75 microns. Core

    sample pulps were shipped by air to SGS Canada’s

    laboratory in Burnaby, BC, where the samples were

    homogenized and subsequently analyzed for multi-

    element (including Li and Ta) using sodium peroxide

    fusion with ICP-AES/MS finish (codes GE_ICP91A50

    and GE_IMS91A50).

 

Drilling techniques

  • Drill type (eg core, reverse circulation,

    open-hole hammer, rotary air blast,

    auger, Bangka, sonic, etc) and details

    (eg core diameter, triple or standard

    tube, depth of diamond tails, face-

    sampling bit or other type, whether core

    is oriented and if so, by what method,

    etc).

 

  • NQ size core diamond drilling was completed for all holes. Core was not oriented.

 

Drill sample recovery

  • Method of recording and assessing core

    and chip sample recoveries and results

    assessed.
  • Measures taken to maximize sample

    recovery and ensure representative

    nature of the samples.
  • Whether a relationship exists between

    sample recovery and grade and whether

    sample bias may have occurred due to

    preferential loss/gain of fine/coarse

    material.

 

  • All drill core was geotechnically logged following

    industry standard practices, and includes TCR, RQD,

    ISRM, and Q-Method. Core recovery is very good and

    typically exceeds 90%.

 

Logging

  • Whether core and chip samples have been

    geologically and geotechnically

    logged to a level of detail to support

    appropriate Mineral Resource

    estimation, mining studies

    and metallurgical studies.
  • Whether logging is qualitative or

    quantitative in nature. Core (or costean,

    channel, etc) photography.
  • The total length and percentage of the

    relevant intersections logged.

 

  • Upon receipt at the core shack, all drill core is pieced

    together, oriented to maximum foliation, metre marked,

    geotechnically logged (including structure), alteration

    logged, geologically logged, and sample logged on an

    individual sample basis. Core box photos are also

    collected of all core drilled, regardless of perceived

    mineralization. Specific gravity measurements of

    pegmatite are also collected at systematic intervals for

    all pegmatite drill core using the water immersion

    method, as well as select host rock drill core.
  • The logging is qualitative by nature, and includes

    estimates of spodumene grain size, inclusions, and

    model mineral estimates.
  • These logging practices meet or exceed current industry

    standard practices.

 

Sub-sampling

techniques and

sample preparation

  • If core, whether cut or sawn and

    whether quarter, half or all core taken.
  • If non-core, whether riffled, tube

    sampled, rotary split, etc and whether

    sampled wet or dry.
  • For all sample types, the nature, quality

    and appropriateness of the sample

    preparation technique.
  • Quality control procedures adopted for

    all sub-sampling stages to maximize 

    representivity of samples.
  • Measures taken to ensure that the

    sampling is representative of the in situ

    material collected, including for

    instance results for field

    duplicate/second-half sampling.
  • Whether sample sizes are appropriate to

    the grain size of the material being

    sampled.

 

·  N/A, no assay data presented.

Quality of assay

data and laboratory

tests

  • The nature, quality and appropriateness

    of the assaying and laboratory

    procedures used and whether the

    technique is considered partial or total.
  • For geophysical tools, spectrometers,

    handheld XRF instruments, etc, the

    parameters used in determining the

    analysis including instrument make and

    model, reading times, calibrations

    factors applied and their derivation, etc.
  • Nature of quality control procedures

    adopted (eg standards, blanks,

    duplicates, external laboratory checks)

    and whether acceptable levels of

    accuracy (ie lack of bias) and precision

    have been established.

 

  • N/A, no assay data presented.

 

Verification of

sampling and

assaying

  • The verification of significant

    intersections by either independent or

    alternative company personnel.
  • The use of twinned holes.
  • Documentation of primary data,

    data entry procedures, data verification, data

    storage (physical and electronic)

    protocols.
  • Discuss any adjustment to assay data.

 

  • Intervals are reviewed and compiled by the VP

    Exploration and Project Managers prior to disclosure,

    including a review of the Company’s internal QAQC

    sample analytical data.
  • Data capture utilizes MX Deposit software whereby

    core logging data is entered directly into the software

    for storage, including direct import of laboratory

    analytical certificates as they are received. The

    Company employs various on-site and post QAQC

    protocols to ensure data integrity and accuracy.

 

Location of data

points

  • Accuracy and quality of surveys used to

    locate drill holes (collar and down-hole

    surveys), trenches, mine workings and

    other locations used in Mineral 

    Resource estimation.
  • Specification of the grid system used.
  • Quality and adequacy of topographic

    control.

 

  • Each drill hole’s collar has been surveyed with a RTK

    Trimble Zephyr 3 (or temporarily using a handheld

    GPS).
  • The coordinate system used is UTM NAD83 Zone 18.
  • The Company completed a property-wide LiDAR and

    orthophoto survey in August 2022, which provides

    high-quality topographic control.
  • The quality and accuracy of the topographic controls

    are considered adequate for advanced stage exploration

    and development, including mineral resource

    estimation.

 

Data spacing and

distribution

  • Data spacing for reporting of

    Exploration Results.
  • Whether the data spacing and

    distribution is sufficient to establish the

    degree of geological and grade

    continuity appropriate for the Mineral

    Resource and Ore Reserve estimation

    procedure(s) and classifications

    applied.
  • Whether sample compositing has been

    applied.

 

  • Drill hole collar spacing is irregular with varied hole

    orientations and multiple collars on the same pad.
  • It is interpreted that some of the drill hole spacing may

    be sufficient to support a mineral resource estimate.
  • Core sample lengths typically range from 0.5 to 1.5 m

    and average ~1 m. Sampling is continuous within all

    pegmatite encountered in the drill hole.

 

Orientation of data

in relation to

geological structure

  • Whether the orientation of sampling

    achieves unbiased sampling of possible

    structures and the extent to which this

    is known, considering the deposit type.
  • If the relationship between the drilling

    orientation and the orientation of key

    mineralized structures is considered to

    have introduced a sampling bias, this

    should be assessed and reported if

    material.

 

  • No sampling bias is anticipated based on structure

    within the mineralized body.
  • At CV9, the orientation and geometry of the pegmatite

    is still being delineated. The pegmatite is currently

    interpreted to be comprised of a single principal dyke,

    which outcrops at surface, has a steep northerly dip, and

    is moderately plunging to the east-southeast True width

    of drill intersections is not known. 

 

Sample security

  • The measures taken to ensure sample

    security.

 

  • N/A, no assay data presented.

 

Audits or reviews

  • The results of any audits or reviews of

    sampling techniques and data.

 

  • A review of the sample procedures for the Company’s

    2021 fall drill program (CF21-001 to 004) and 2022

    winter drill program (CV22-015 to 034) was completed

    by an Independent Competent Person and deemed

    adequate and acceptable to industry best practices

    (discussed in a technical report titled “NI 43-101

    Technical Report on the Corvette Property, Quebec,

    Canada”, by Alex Knox, M.Sc., P.Geol., Issue Date of

    June 27th, 2022.)
  • A review of the sample procedures through the

    Company’s 2023 winter drill program was completed

    by an independent Competent Person with respect to the

    CV5 Pegmatite’s maiden mineral resource estimate and

    deemed adequate and acceptable to industry best

    practices (discussed in a technical report titled ” NI

    43–101 Technical Report, Mineral Resource Estimate

    for the CV5 Pegmatite, Corvette Property” by Todd 

    McCracken, P.Geo., of BBA Engineering Ltd., and

    Ryan Cunningham, M.Eng., P.Eng., of Primero Group

    Americas Inc., Effective Date of June 25, 2023, and

    Issue Date of September 8, 2023.
  • Additionally, the Company continually reviews and

    evaluates its procedures in order to optimize and ensure

    compliance at all levels of sample data collection and

    handling.

 

Section 2 – Reporting of Exploration Results

Criteria

JORC Code explanation

Commentary

Mineral tenement

and land tenure

status

  • Type, reference name/number, location

    and ownership including agreements or

    material issues with third parties such as

    joint ventures, partnerships, overriding

    royalties, native title interests, historical

    sites, wilderness or national park and

    environmental settings.
  • The security of the tenure held at the time

    of reporting along with any known

    impediments to obtaining a licence to

    operate in the area.

 

  • The Corvette Property is comprised of 424 CDC claims

    located in the James Bay Region of Quebec, with

    Patriot Battery Metals Inc. the registered title holder for all

    of the claims. The northern border of the Property’s

    primary claim block is located within approximately 6

    km to the south of the Trans-Taiga Road and powerline

    infrastructure corridor. At the Property, The CV9

    Spodumene Pegmatite is located approximately 14

    km west of the CV5 Spodumene Pegmatite, 9.5 km west-

    northwest of the CV13 Spodumene Pegmatite, and

    11 km south of the Trans-Taiga Road and powerline

    infrastructure.
  • The Company holds 100% interest in the Property

    subject to various royalty obligations depending on

    original acquisition agreements. DG Resources

    Management holds a 2% NSR (no buyback) on 76

    claims, D.B.A. Canadian Mining House holds a 2%

    NSR on 50 claims (half buyback for $2M) and Osisko

    Gold Royalties holds a sliding scale NSR of 1.5-3.5%

    on precious metals, and 2% on all other products, over

    111 claims. The vast majority of the CV13 Spodumene

    Pegmatite, as is currently delineated, is not subject to a

    royalty.
  • The Property does not overlap any atypically sensitive

    environmental areas or parks, or historical sites to the

    knowledge of the Company. There are no known 

    hinderances to operating at the Property, apart from the

    goose harvesting season (typically mid-April to mid-

    May) where the communities request helicopter flying

    not be completed, and potentially wildfires depending

    on the season, scale, and location.
  • Claim expiry dates range from September 2024 to

    September 2026. 

 

Exploration done

by other parties

  • Acknowledgment and appraisal of

    exploration by other parties.

 

  • No core assay results from other parties are disclosed

    herein.
  • The most recent independent Property review was a

    technical report titled “NI 43-101 Technical Report,

    Mineral Resource Estimate for the CV5 Pegmatite,

    Corvette Property, James Bay Region, Québec,

    Canada”, by Todd McCracken, P.Geo., of BBA

    Engineering Ltd., and Ryan Cunningham, M.Eng.,

    P.Eng., of Primero Group Americas Inc., Effective Date

    of June 25, 2023, and Issue Date of September 8, 2023.

 

Geology

  • Deposit type, geological setting and

    style of mineralization.

 

  • The Property overlies a large portion of the Lac Guyer

    Greenstone Belt, considered part of the larger La

    Grande River Greenstone Belt and is dominated by

    volcanic rocks metamorphosed to amphibolite facies.

    The claim block is dominantly host to rocks of the

    Guyer Group (amphibolite, iron formation,

    intermediate to mafic volcanics, peridotite, pyroxenite,

    komatiite, as well as felsic volcanics). The amphibolite

    rocks that trend east-west (generally steeply south

    dipping) through this region are bordered to the north

    by the Magin Formation (conglomerate and wacke) and

    to the south by an assemblage of tonalite, granodiorite,

    and diorite, in addition to metasediments of the Marbot

    Group (conglomerate, wacke). Several regional-scale

    Proterozoic gabbroic dykes also cut through portions of

    the Property (Lac Spirt Dykes, Senneterre Dykes).
  • The geological setting is prospective for gold, silver,

    base metals, platinum group elements, and lithium over

    several different deposit styles including orogenic gold

    (Au), volcanogenic massive sulfide (Cu, Au, Ag),

    komatiite-ultramafic (Au, Ag, PGE, Ni, Cu, Co), and

    pegmatite (Li, Ta).
  • Exploration of the Property has outlined three primary

    mineral exploration trends crossing dominantly east-

    west over large portions of the Property – Golden Trend

    (gold), Maven Trend (copper, gold, silver), and CV

    Trend (lithium, tantalum). The CV5 and CV13

    spodumene pegmatites are situated within the CV

    Trend. Lithium mineralization at the Property,

    including at CV5, CV13, and CV9, is observed to occur

    within quartz-feldspar pegmatite, which may be

    exposed at surface as high relief ‘whale-back’

    landforms. The pegmatite is often very coarse-grained

    and off-white in appearance, with darker sections

    commonly composed of mica and smoky quartz, and

    occasional tourmaline.
  • The lithium pegmatites at Corvette are categorized as

    LCT Pegmatites. Core assays and ongoing

    mineralogical studies, coupled with field mineral

    identification and assays, indicate spodumene as the

    dominant lithium-bearing mineral on the Property, with

    no significant petalite, lepidolite, lithium-phosphate

    minerals, or apatite present. The pegmatites also carry

    significant tantalum values with tantalite indicated to be

    the mineral phase.

 

Drill hole

Information

  • A summary of all information material

    to the understanding of the exploration

    results including a tabulation of the

    following information for all Material

    drill holes:

    • easting and northing of the drill hole

      collar
    • elevation or RL (Reduced Level –

      elevation above sea level in metres) of

      the drill hole collar
    • dip and azimuth of the hole
    • down hole length and interception

      depth
    • hole length.
  • If the exclusion of this information is

    justified on the basis that the

    information is not Material and this

    exclusion does not detract from the

    understanding of the report, the

    Competent Person should clearly

    explain why this is the case.

 

  • Drill hole attribute information is included in a table

    herein.  
  • Pegmatite intersections of <2 m are not typically

    presented as they are considered insignificant.

 

Data aggregation

methods

  • In reporting Exploration Results,

    weighting averaging techniques,

    maximum and/or minimum grade

    truncations (eg cutting of high grades)

    and cut-off grades are usually Material

    and should be stated.
  • Where aggregate intercepts incorporate

    short lengths of high grade results and

    longer lengths of low grade results, the

    procedure used for such aggregation

    should be stated and some typical

    examples of such aggregations should

    be shown in detail.
  • The assumptions used for any reporting

    of metal equivalent values should be

    clearly stated.

 

  • N/A, no assay data presented.

 

Relationship

between

mineralization

widths and intercept

lengths

  • These relationships are particularly

    important in the reporting of

    Exploration Results.
  • If the geometry of the mineralization

    with respect to the drill hole angle is

    known, its nature should be reported.
  • If it is not known and only the down

    hole lengths are reported, there should

    be a clear statement to this effect (eg ‘

    down hole length, true width not

    known’).

 

  • Geological modelling is ongoing on a hole-by-hole

    basis and as assays are received. However, current

    interpretation indicates CV9 is comprised of a single

    principal dyke, which outcrops at surface, has a steep

    northerly dip, and is moderately plunging to the east-

    southeast. A strike length of 450 m has been delineated

    through drilling and outcrop.
  • All reported widths are core length. True widths are not

    calculated for each hole due to the relatively wide drill

    spacing at this stage of delineation and the typical

    irregular nature of pegmatite, as well as the varied drill

    hole orientations. As such, true widths may vary widely

    from hole to hole. 

 

Diagrams

  • Appropriate maps and sections (with

    scales) and tabulations of intercepts

    should be included for any significant

    discovery being reported These should

    include, but not be limited to a plan

    view of drill hole collar locations and

    appropriate sectional views.

 

  • Please refer to the figures included herein as well as

    those posted on the Company’s website.

 

Balanced reporting

  • Where comprehensive reporting of all

    Exploration Results is not practicable,

    representative reporting of both low and

    high grades and/or widths should be

    practiced to avoid misleading reporting

    of Exploration Results.

 

  • Please refer to the table(s) included herein as well as

    those posted on the Company’s website.
  • Results for pegmatite intervals <2 m are not reported.

 

Other substantive

exploration data

  • Other exploration data, if meaningful

    and material, should be reported

    including (but not limited to):

    geological observations; geophysical

    survey results; geochemical survey

    results; bulk samples – size and method

    of treatment; metallurgical test results;

    bulk density, groundwater, 

    geotechnical and rock characteristics;

    potential deleterious or contaminating

    substances.

 

  • The Company is currently completing baseline

    environmental work over the CV5 and CV13 pegmatite

    area. No endangered flora or fauna have been

    documented over the Property to date, and several sites

    have been identified as potentially suitable for mine

    infrastructure. 
  • The Company has completed a bathymetric survey over

    the shallow glacial lake which overlies a portion of the

    CV5 Spodumene Pegmatite. The lake depth ranges

    from <2 m to approximately 18 m, although the

    majority of the CV5 Spodumene Pegmatite, as

    delineated to date, is overlain by typically <2 to 10 m of

    water.
  • The Company has completed preliminary metallurgical

    testing comprised of HLS and magnetic testing, which

    has produced 6+% Li2O spodumene concentrates at

    >70% recovery on both CV5 and CV13 pegmatite

    material, indicating DMS as a viable primary process

    approach, and that both CV5 and CV13 could

    potentially feed the same process plant. A DMS test on

    CV5 Spodumene Pegmatite material returned a

    spodumene concentrate grading 5.8% Li2O at 79%

    recovery, strongly indicating potential for a DMS only

    operation to be applicable.
  • Various mandates required for advancing the Project

    towards economic studies have been initiated, including

    but not limited to, environmental baseline, metallurgy,

     geomechanics, hydrogeology, hydrology, stakeholder

    engagement, geochemical characterization, as well as

    transportation and logistical studies.

 

Further work

  • The nature and scale of planned further

    work (eg tests for lateral extensions or

    depth extensions or large-scale step-out

    drilling).
  • Diagrams clearly highlighting the areas

    of possible extensions, including the

    main geological interpretations and

    future drilling areas, provided this

    information is not commercially

    sensitive.

 

  • The Company intends to continue drilling the

    pegmatites of the Corvette Property, focused on the

    CV5 Spodumene Pegmatite and adjacent subordinate

    lenses, as well as the CV13 Spodumene Pegmatite. A

    follow-up drill program at the CV9 Spodumene

    Pegmatite is anticipated following receipt of assays.  

 

SOURCE Patriot Battery Metals Inc

Also from this source

PRN Top Stories Newsletters

Sign up to get PRN’s top stories and curated news delivered to your inbox weekly!

Thank you for subscribing!

By signing up you agree to receive content from us.
Our newsletters contain tracking pixels to help us deliver unique content based on each subscriber’s engagement and interests. For more information on how we will use your data to ensure we send you relevant content please visit our PRN Consumer Newsletter Privacy Notice. You can withdraw your consent at any time in the footer of every email you’ll receive.
Mit Ihrer Anmeldung erklären Sie sich damit einverstanden, Inhalte von uns zu erhalten.
Unsere Newsletter enthalten Zählpixel, die die Lieferung einzigartiger Inhalte in Bezug auf das Abonnement und die Interessen der einzelnen Abonnenten ermöglichen. Weitere Informationen über die Verwendung Ihrer Daten im Hinblick auf die Zusendung von relevanten Inhalten, finden Sie in unserer PRN Consumer Newsletter Privacy Notice. Ihre Zustimmung können Sie jederzeit in der Fußzeile jeder erhaltenen E-Mail widerrufen.
En vous inscrivant à la newsletter, vous consentez à la réception de contenus de notre part.
Notre newsletter contient des pixels espions nous permettant la fourniture à chaque abonné, d’un contenu unique en lien avec ses souscriptions et intérêts. Pour de plus amples informations sur l’utilisation faite de vos données en vue de l’envoi des contenus concernés, nous vous invitons à consulter la politique de confidentialité disponible à partir du lien suivant PRN Consumer Newsletter Privacy Notice. Vous pouvez à tout moment revenir sur votre consentement par le biais des informations situées au bas de chaque e-mail reçu.
Регистрирайки се, Вие се съгласявате да получавате информационно съдържание от нас. Нашите бюлетини съдържат проследяващи пиксели, които ни помагат да предоставяме уникално съдържание въз основа на ангажираността и интересите на всеки абонат. За повече информация относно начина, по който ще използваме Вашите данни, за да гарантираме, че Ви изпращаме подходящо съдържание, моля, направете справка с нашето Уведомление за поверителност на потребителския бюлетин на PRN. Можете да оттеглите съгласието си по всяко време в долния колонтитул на всеки от имейлите, които ще получите.

Go to Source