Japan, Fiat Chrysler sound alarms on tariff threat

In this January 2017 photo, cars are parked waiting to be exported at Yokohama port near Tokyo. Japan’s government has warned in a report that a higher U.S. tariff on auto imports could backfire, jeopardizing hundreds of thousands of American jobs created by Japanese auto-related companies, raising prices for U.S. consumers and devastating the U.S.… Continue reading Japan, Fiat Chrysler sound alarms on tariff threat

Mazda Joins Toyota in Condemning Trump’s Car-Tariff Plans

LISTEN TO ARTICLE SHARE THIS ARTICLE Mazda Motor Corp. became the latest auto company to condemn the Trump administration’s plans for potential car import tariffs, saying such duties would hit both the industry as well as U.S. consumers. The Japanese manufacturer said it filed comments on the Commerce Department’s investigation into car-related imports on Thursday,… Continue reading Mazda Joins Toyota in Condemning Trump’s Car-Tariff Plans

Nissan and Italdesign team up for ‘limitless’ GT-R prototype

The Nissan GT-R50 by Italdesign has been revealed as a one-off collaboration between Nissan and the design house to celebrate 50 years of the GT-R and Italdesign.  Based on the GT-R Nismo, the GT-R50 is Nissan and Italdesign’s first collaboration, although the development, engineering and building of the car was all Italdesign’s work, while the design… Continue reading Nissan and Italdesign team up for ‘limitless’ GT-R prototype

UPDATE 1-BP bets on electric vehicle switch with Chargemaster buy

LONDON (Reuters) – BP will buy Britain’s largest electric vehicle charging firm Chargemaster and plans to use its technology to roll out ultra-fast chargers across its 1,200 petrol stations in the country over the next 12 months. FILE PHOTO: The logo of BP is on display at a petrol station in Moscow, Russia, July 4,… Continue reading UPDATE 1-BP bets on electric vehicle switch with Chargemaster buy

Private or open: how might we imagine the interior of a future robot-vehicle?

Tuesday 26 June 2018 by Emmanuel GENTY – Innovation Emmanuel GENTY Share on Twitter Share on Facebook Share on LinkedIn Share on Pinterest Between now and the end of 2018, members of the public will be able to step inside autonomous ZOE vehicles placed on the road as part of Rouen Normandy Autonomous Lab. Groupe… Continue reading Private or open: how might we imagine the interior of a future robot-vehicle?

Mobility of the future: Groupe Renault partners with the Île-de-France Region

Tuesday 19 June 2018 by Emmanuel GENTY – Innovation Emmanuel GENTY Share on Twitter Share on Facebook Share on LinkedIn Share on Pinterest Saving time and money while taking the stress out of travel is a dream that is probably shared by all regular travelers in Paris. How can travelers make the best choices for… Continue reading Mobility of the future: Groupe Renault partners with the Île-de-France Region

Dacia simply successful

Monday 25 June 2018 by Rachida Badri – Corporate Rachida Badri Share on Twitter Share on Facebook Share on LinkedIn Share on Pinterest As part of the 50th anniversary celebrations of Dacia in Romania, Groupe Renault talks about how momentum has developed since the renewal of the brand in 2004. It has already engaged five… Continue reading Dacia simply successful

Road Trip Ready EVs — Tesla Pulls Further Ahead

Top Posts

Tesla aiming to break $100/kWh at cell-level later…

Tesla 2018 Annual Shareholder Meeting – Quick Highlights

Tesla to take up to 50% of US…

Road Trip Ready EVs — Tesla Pulls Further…

350 kW ABB Fast Charger Introduced At Hannover…

36,800 Mitsubishi Outlander PHEVs In The UK

$$Billions$$ — Tesla Is Making Billions & Investing…

50% Drop In Battery Prices In 3 Years

500 Electric Trash Trucks To Roll Out In…

1,300 Kilometer Highway In Iceland Gets 20 ABB…

Road trips are the final frontier for EVs to totally outshine combustion engine vehicles. Already clearly a better technology than combustion vehicles in every other respect, of all the EVs currently on the market, only Tesla so far provides truly compelling road trip ready offerings. This is an area that other car makers need to pay much more attention to if they have a hope of ever competing with Tesla’s stratospheric demand and world leading EV sales volume.

The recently announced Tesla model 3 long range all wheel drive version will be a compelling combination of road-trip-readiness and affordability, with likely the longest range of any EV, impressive energy efficiency even at highway cruising speeds, and reliable fast recharging speeds. According to past experience of the dual motor range advantage of all wheel drive models, common sense suggests that the newcomer will provide a 4-5% range improvement over the single motor version, which is itself a very compelling road trip vehicle. Official EPA and WLTP vehicle range ratings are only useful for relative comparison (not nearly accurate in absolute terms). More reliable real world range calculations and data (such as those by long time contributor to the Model 3 Owner’s Club Forums TROY) indicate that cruising range of the dual motor version at 75 mph [120 kph] will be around 275 miles [443 km] in optimal conditions. At a more leisurely 70 mph [113 kph] this increases to 299 miles [481 km] of range. This thing will take road trips in its stride.

Tesla still wants to sell good numbers of its model S and model X, so has historically slightly downplayed the model 3’s official range, and will likely continue to do so for all model 3 variants for a while longer. This will remain the case until the S and X get a refresh to further differentiate their range and features from that of the less expensive model 3 offerings, perhaps later this year. For now, the model 3 is significantly more energy efficient than the bigger and heavier S (not to mention the X), with even the official EPA figures giving the 2018 model S 100D a highway energy consumption of 102 MPGe and the model 3 LR 123 MPGe. Although EPA and WLTP metrics are notoriously untethered from reality, they can be useful as a basis for comparing energy efficiency of different vehicles. The real world driving ranges of the longest range versions model S and model 3 are similar, though the model 3’s energy efficiency allows it to achieve this with a significantly smaller battery, which helps in reducing its relative cost, and the recharge time needed to regain a given range. We know that Tesla requested the EPA to give the model 3 Long Range (3 LR) an official range of 310 miles, when it in fact measured 334 miles on the standard test cycle. For the same reasons, Elon has suggested that the model 3 Long Range all wheel drive version (3 LR AWD) will have the same official range as the single motor model 3 LR (310 miles), even though sensible estimates suggest a 4-5% boost in range.

Either way, the good news is that for anyone who has wanted to get into a relatively affordable EV and has been concerned about still being able to do comfortable road trips, the newly announced model 3 LR AWD will have very impressive range capabilities and (along with several other existing Tesla models) will be no less convenient than a gasoline car for road trip purposes (and in fact a much better experience than a gasoline car all round). Whilst the single motor version is already very capable of making practical road trips, the dual motor version pushes the bar even higher. With the standard aero wheels, and in ideal conditions (more on what this means below), the model 3 LR AWD’s 100% range when continuously cruising at various speeds (where permitted) should be as follows:

A note on Ideal Conditions vs. the Real World
Folks coming from a combustion engine experience may not be accustomed to thinking about how real world environmental conditions can effect the energy use of the vehicle. But the diesel emissions scandal has clearly shown that combustion vehicles are in reality a lot less energy efficient and a lot more polluting than official ratings and manufacturers’ claims make them out to be. The challenges of real world conditions apply to all vehicles, whatever the power-train. ‘Ideal conditions’ means mild weather and mild ambient temperature on a decently paved road without the need for much HVAC and without significant headwinds, amongst other things. These ideal conditions don’t happen too often, so all vehicles use a bit more energy than ideal conditions suggest. When, for example, a 10 mph headwind is present you should expect closer to 80 mph equivalent range figures when travelling at 70 mph. Crosswinds at these mild levels are less of an energy concern and of course tailwinds will help your energy consumption, if you are lucky enough to get them.

HVAC can use significant energy in extreme temperatures. For gas vehicles with less efficient HVAC, the energy hit can be as large as 20%. EVs are usually designed with much more efficient HVAC systems, with a more typical 5-10% hit on your energy use, depending on circumstances. Another EV advantage is that you can remotely pre-heat or pre-cool the interior (and pre-condition the batteries) when the vehicle is still plugged in to a recharging point, without using any battery energy to do so. Mid trip, EVs can do the same whenever they are recharging. A combustion engine vehicle needs to have the driver present and the engine turned on before doing these things, potentially wasting both energy and time, to e.g. de-ice the windshield or remove oven-like cabin temperatures before the vehicle is drive-able.

Tesla guru Bjorn Nyland recently analysed energy consumption under HVAC use on the road and found that AC cooling the cabin of his model X from 77-80 Fahrenheit (25-27 Celsius) down to 68 Fahrenheit (20 Celsius) added around 5% to energy use compared to having it switched off (he conducted the test at different speeds with similar % results). In more extreme conditions, your EV’s HVAC could add 10% to energy use, with a corresponding range hit, although this will depend on your driving duration, speed and other factors. The good news is that EV HVAC systems are becoming more efficient all the time (e.g. using heat pumps rather than resistive heating).

Elevation changes tend to average out over long distances, so shouldn’t be an issue during most road trips. Rain and poor surfaces can have a modest energy hit also. Therefore in moderately poor conditions (modest headwinds, and high/low temperatures), you may use up to 20% extra energy on your journey compared to the above ‘ideal conditions’ figures (EV drivers please join in the comments section to add your own experience on this). As a general rule, if you slow down fractionally in tough conditions (sensible anyway in rain, wind or extreme cold) you will be able to compensate without much trouble. The range chart figures above demonstrate that a 5 mph [8 kph] speed trim at highway velocities will save you around 10% energy use, giving you 10% higher range and often resulting in an overall journey time not much different. The same is true in most vehicles.

EVs and Road Trip Readiness
As I noted in a previous piece, the freedom to hit the open road is something we have long taken for granted with our cars. Despite the fact that for most of us it is something we do just a handful of times a year, the possibility of being able to do so has a strong appeal. Most folks want to buy a car that is capable of doing road trips (especially if it is our only car, as it is for most car owning families worldwide), however seldom we actually make such trips.

Since total energy storage is a key factor influencing driving range (along with energy efficiency), this is an area where gas vehicles have historically had a residual energy advantage over EVs. However, Tesla’s large battery models, designed both to have world leading energy efficiency, and fast, reliable, and convenient recharging, have long since had sufficient range to enable practical road tripping. Road tripping in a quiet and vibration free EV is also a lot more pleasant and less tiring experience than in a combustion engine vehicle.

A road trip in an EV typically involves initially driving from fully 100% battery state of charge (SoC) down to no less than 10% SoC, and then recharging. 10% is the recommended minimum because you don’t want to count on finding the right charging spot when you are getting close to empty (just as you wouldn’t in a gas car), and also because it is not great for long term battery health to habitually drop much below 10% SoC. DC fast recharging back up to 80% SoC happens relatively rapidly in well designed EVs (including all Teslas, though disappointingly few others, as we will see below), but all vehicles typically slow down their rates considerably above 80% SoC, again to preserve battery health. So recharging much beyond 80% is a usually a inefficient use of your time if you are mid trip, though if you are ready for a longer break, charging to 90% SoC or more may be convenient. Here’s a useful illustration from European recharge specialist Fastned, based on recharging data from hundreds of Hyundai Ioniq fast charging sessions:

The Hyundai Ioniq DC fast charging capability (based on Fastned’s real world data)

So on a planned road trip, your first driving stage can make use of up to 90% of your battery’s rated range and subsequent stages will likely be using closer to 70%. In a model 3 LR AWD, assuming driving at 70-75 mph [113-121 kph] and experiencing moderately poor environmental conditions, you can still expect to cover at least 200-215 miles [322-346 km] over your initial stage (using 90% of battery charge) and then take a 30-40 minute break before covering at least another 155-168 miles [250-270 km] (using 70% of battery charge). That’s almost 3 hours of initial driving (if you’re up to it – 2.5 hours is the recommended maximum healthy driving duration before taking a break). Thereafter you can drive 2 to 2.5 hour stages at 70-75 mph [113-120 kph], repeating as often as you need, with short breaks in between.

With these capabilities you can make, for example, a trip from downtown LA to downtown San Francisco (380 miles) without any inconvenience, even in poor environmental conditions. It takes around five and a half hours of driving at highway speeds with a 35 minute break just past the mid point. That’s the typical driving duration and the comfortable choice for a break – whatever your vehicle – on such a long drive. With kids on board, older folks, a dog, you’ll likely want to stop more frequently. Last time I made the LA to SF road trip (with a friend, in his ICE car) we stopped for a 40 minute food break along the I-5 highway and then had to dedicate extra time for gasoline refuelling. An EV charge session doesn’t need to be attended (smartphone apps allow you to remotely monitor charging progress), so you can bundle the food break into the recharging period. Any average road trip would follow a similar pattern of driving time and break time, be it from Paris to Frankfurt, Milan to Zagreb, Shenzhen to Xiamen or what have you. If the trip was longer still, you’d want to stop for further breaks every two to three hours of driving anyway.

We are now at a point where Tesla’s EVs can take such road trips in their stride, with no practical difference in comfortable road-trip-ability compared to any other vehicle.

Where are other manufacturers on the road trip readiness front?
Still lagging Tesla by a long shot, unfortunately. We all wish they would step up, but they are not making nearly enough effort. So in this section let’s review their progress and give them some constructive criticism.

Nissan Leaf 40 kWh
New Nissan LEAF

We’ve recently seen that the 2018 Nissan Leaf 40 kWh is inherently incapable of practical road tripping, due to Nissan’s absurd decision to save a couple of hundred bucks by avoiding including even a basic active thermal management system in the vehicle. The management software just resorts to throttling the charging power whenever the battery gets too hot (and it does all the time at normal speed highway driving). Nissan obscured this limitation in marketing materials, but it has quickly emerged for owners in real world use, and has become a source of great disappointment for folks attempting longer drives in the Leaf (see #Rapidgate). Now that this problem is known about, Nissan will likely loose sales and revenue as a result. They may even get sued or face ‘lemon law’. How’s that for short sighted budgeting decisions?

Only with the battery at an unrealistically ideal temperature, the 40 kWh Leaf will take at least 42 minutes to charge from 10-80%, (at 45 kW initially, then tapering down to 27 kW) which will give you about 90 minutes of driving at 70 mph (covering 105 miles) in perfect conditions. However, with the battery already unavoidably getting hot from driving at these speeds, (as well as heating up significantly during the charging process itself), DC charge rates drop to 22 kWh, thus taking 80-90 minutes of charging to gain 90 minutes of highway driving even in a best case scenario. See EV superfan Bjorn Nyland’s real world experience here. Spending half your journey time charging, and having to limit your speed to 57 mph tops (as Bjorn recommends) makes the 40 kWh Leaf completely impractical for making road trips, even in a cool climate (Bjorn’s test was done in the Norwegian winter). In warm or hot climates it is worse still.

Nissan boss Carlos Ghosn is also under the belief that 186 miles of range (at 100% charge) is sufficient for EV owners (not that the Leaf can achieve even this modest range). That would typically mean real world range figures less than 60% of the Tesla figures above. Apparently Ghosn either believes road trips are a thing of the past, or that EVs will only ever be city and commuting cars. Thanks Carlos!

Chevy Bolt
2018 Chevrolet Bolt EV

The Chevy Bolt is somewhere in between the Leaf and the model 3 LR, with fairly decent highway range. A car and driver test found a 100% range of 190 miles of highway cruising range at 75 mph, with moderate HVAC settings. That’s around 70% of the highway range of the Tesla model 3LR AWD. So the car has pretty decent range. Using 90% of the battery, the road tripping range in favourable conditions could be 170-180 miles in the initial stage, and thereafter 130-155 miles when using 70% of the battery after a recharge. On the recharging side, however, while Chevy claims recharging of ’90 miles of range in 30 minutes’, in reality the Bolt will only recharge up to 37% of its energy in that time (even in ideal conditions), which would equate to 70 miles at 75 mph highway speeds (with moderate HVAC use). Perhaps 80 miles at 70 mph. A more significant problem is that the decent charging rates only occur below 52% SoC. Here is the real world DC fast charging data from Fastned:

The Chevy Bolt / Opel Ampera-e DC fast charging capability (based on Fastned’s real world data)

This tells us that when charging from 10% to 52%, a 45 kW rate is possible in ideal conditions, which equates to adding about 25 kWh, taking about 33 minutes. From 52% to 80% charge occurs at an average 35 kW in ideal conditions, adding around 17 kWh over the next 30 minutes. So to recharge from 10% to 80%, in ideal conditions, takes 63 minutes. Thus 380 mile ‘ideal condition’ trips in a Bolt at 70-75 mph require an initial stop at 175 miles for 63 minutes, then another stop at the 315 mile mark for perhaps 25 minutes before heading off again to reach the 380 mile mark. Or you could do 3 stops from 10% to 52% SoC at around 33 minutes each and get to your destination that way. Either way, that’s a total of around 90 minutes of charging, in ideal conditions. In real world conditions, such a journey seems to require a combination of adventurous spirit and patience (see this forum), traits that, whilst laudable, are not necessary in a Tesla nor in the gas vehicles folks have gotten used to. For highway trips totalling up to 175 miles then, the Bolt is great, and does have all the other EV benefits. But after the initial 175 miles, drivers have to be willing to take 30-35 minute breaks every 80 miles, or 60+ minute breaks every 130 miles. That’s an hour break for every 1 hour 45 minutes of driving. Or, better, 33 minute breaks every 1 hour and 5 minutes of driving. Both of those patterns are in ‘ideal conditions’ and neither of them anyway resemble a practical road trip for most folks. Hopefully Chevy will improve the Bolt’s charging capability in future versions.

Soon to arrive Jaguar I-Pace
I-Pace

The upcoming Jaguar I-Pace is not an affordable vehicle (compared to the Tesla model 3 LR or LR AWD) and not an efficient vehicle, and will likely have a real world range (at 70-75 mph) lower than that of the Bolt (the overall EPA rating gives it around 9% less range than the Bolt). It does promise to have better charging ability (100 kW DC capable in theory, though actual charging speeds remain to be seen). Since it has a 90 kWh battery, filling it from 10%-80% (adding 63 kWh) will take at least 45 minutes even at a 100 kW charger, so long as there is no significant throttling. The real range at highway speeds will likely be about 60% of the Tesla Model 3 LR AWD range figures above, given the relative EPA rating and the fact that SUVs struggle with aero relatively more at higher speeds (speeds that the EPA rating does not account for). That means 70% SoC of the battery will likely give little over 1.5 hours of real world driving at 70-75mph between 45+ minute charges. With slightly lower range but marginally better charging than the Bolt, the road trip readiness will no better overall – only patient adventurers need apply. It will however be a good vehicle for highway drives of up to 155 miles or so (its 90% range at highway speeds), and great if you only use it for daily commutes and regular driving. Perhaps a future version will be more energy efficient and road trip ready.

Soon to arrive Audi Quattro SUV
Audi Quattro EV

The Audi Quattro SUV will be expensive (€80k, $100k) and won’t likely be available anywhere for purchase until the end of 2018. It will have a 95 kWh battery, but its energy efficiency relative to the I-Pace’s similarly sized battery is currently unknown. The stablemate low range E-Golf is not an energy efficient EV compared to its peers (e.g. having a 28% larger battery than the Hyundai Ioniq, yet no greater range). Audi will need to do something very different if the Quattro is to be road trip ready, even with its big battery. Likely it will have a similar highway range to the less expensive I-Pace. However, that’s only 70% that of the Model X 100D’s highway range, which costs a fraction less than the Audi, so it’s hard to imagine who would choose the latter. But unlike the I-Pace, the Quattro should have better 150kW DC fast charging, which in theory will put it close to the Telsas in recharging times. The lower energy efficiency will mean it will gain less actual mileage than the Tesla for a given charge duration, however. 150kW DC fast charging infrastructure is also very rare compared to Tesla’s supercharger network. The Quattro may appeal to Audi loyalists, and might appear ..

Renault’s Cléon Plant : among the Group’s technological showcase

Friday 22 June 2018 by Valérie Calloch – Corporate Valérie Calloch Share on Twitter Share on Facebook Share on LinkedIn Share on Pinterest With nearly 100 million engines and gearboxes produced, the Cleon plant is celebrating its 60th spring this year. Originally created to manufacture gearboxes, it also produces gasoline engines, diesel engines and electric… Continue reading Renault’s Cléon Plant : among the Group’s technological showcase

‘Zero’ chance of Renault taking over Nissan, Mitsubishi: Ghosn

TOKYO (Reuters) – Renault SA (RENA.PA) absorbing Nissan Motor Co. (7201.T) and Mitsubishi Motors Corp (7211.T) is not an option as the carmakers look to strengthen their partnership while retaining their autonomy, alliance chairman Carlos Ghosn said on Friday. FILE PHOTO: Carlos Ghosn, chairman and CEO of the Renault-Nissan-Mitsubishi Alliance, responds to a question on… Continue reading ‘Zero’ chance of Renault taking over Nissan, Mitsubishi: Ghosn